翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hemoglobin F : ウィキペディア英語版
Fetal hemoglobin

Fetal hemoglobin, or foetal haemoglobin, (also hemoglobin F, HbF, or α2γ2) is the main oxygen transport protein in the human fetus during the last seven months of development in the uterus and persists in the newborn until roughly 6 months old. Functionally, fetal hemoglobin differs most from adult hemoglobin in that it is able to bind oxygen with greater affinity than the adult form, giving the developing fetus better access to oxygen from the mother's bloodstream.
In newborns, fetal hemoglobin is nearly completely replaced by adult hemoglobin by approximately 6 months postnatally, except in a few thalassemia cases in which there may be a delay in cessation of HbF production until 3–5 years of age. In adults, fetal hemoglobin production can be reactivated pharmacologically, which is useful in the treatment of diseases such as sickle-cell disease.
==Overview==

Oxygenated blood is delivered to the fetus via the umbilical vein from the placenta, which is anchored to the wall of the mother's uterus. The chorion acts as a barrier between the maternal and fetal circulation so that there is no admixture of maternal and fetal blood. Blood in the maternal circulation is delivered via open ended arterioles to the intervillous space of the chorionic plate, where it bathes the chorionic villi that carry umbilical capillary beds, thereby allowing gas exchange to occur between the maternal and fetal circulation. Deoxygenated maternal blood drains into open ended intervillous venules to return to maternal circulation. Due to the admixture of oxygenated and deoxygenated blood, maternal blood in the intervillous space is lower in oxygen than arterial blood. As such, fetal hemoglobin must be able to bind oxygen with greater affinity than adult hemoglobin in order to compensate for the relatively lower oxygen tension of the maternal blood supplying the chorion.
Fetal hemoglobin's affinity for oxygen is substantially greater than that of adult hemoglobin. Notably, the P50 value for fetal hemoglobin is lower than adult hemoglobin (i.e., the partial pressure of oxygen at which the protein is 50% saturated; lower values indicate greater affinity). The P50 of fetal hemoglobin is roughly 19 mmHg, whereas adult hemoglobin is approximately 26.8 mmHg. As a result, the "oxygen saturation curve", which plots percent saturation ''vs.'' pO2, is left-shifted for fetal hemoglobin as compared to adult hemoglobin.
This greater affinity for oxygen is explained by the lack of fetal hemoglobin's interaction with 2,3-bisphosphoglycerate (2,3-BPG or 2,3-DPG). In adult red blood cells, this substance decreases the affinity of hemoglobin for oxygen. 2,3-BPG is also present in fetal red blood cells, but interacts less efficiently with fetal hemoglobin than adult hemoglobin. This is due to a change in a single amino acid (residue 143) found in the 2,3-BPG 'binding pocket': from histidine to serine, which gives rise to the greater oxygen affinity.
Whereas histidine is positively charged and interacts well with the negative charges found on the surface of 2,3-BPG, Serine has a neutrally charged side chain at physiological pH, and interacts less well. This change results in less binding of 2,3-BPG to fetal Hb, and as a result oxygen will bind to it with higher affinity than adult hemoglobin.
For mothers to deliver oxygen to a fetus, it is necessary for the fetal hemoglobin to extract oxygen from the maternal oxygenated hemoglobin across the placenta. The higher oxygen affinity required for fetal hemoglobin is achieved by the protein subunit γ (gamma), instead of the β (beta) subunit. Because the γ subunit has fewer positive charges than the (adult) β subunit, 2,3-BPG is less electrostatically bound to fetal hemoglobin compared to adult hemoglobin. This lowered affinity allows for adult hemoglobin (maternal hemoglobin) to readily transfer its oxygen to the fetal bloodstream.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fetal hemoglobin」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.